Über Ordnungs–Unordnungsphänomene bei Sauerstoff perowskiten vom Typ $A_3^{2+}B^{2+}M_2^{5+}O_9$

U. TREIBER UND S. KEMMLER-SACK*

Institut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, D-7400 Tübingen, West Germany

Received July 13, 1981; in revised form October 7, 1981

Perovskites of the type $A_3^{2+}B^{2+}M_3^{2+}O_9$, where $A^{2+} = Ba$, Sr; $B^{2+} = Mn$, Co, Ni, Zn; $M^{3+} = Nb$, Ta, show order-disorder phenomena. At lower temperatures a thermodynamically unstable disordered cubic perovskite is formed ($\frac{1}{3}$ formula unit— $AB_{13}M_{38}O_3$ —in the cell), which transforms irreversibly into a 1:2 ordered high-temperature form with 3L structure (sequence $(c)_3$). For $A^{2+} = Ba$ this lattice is hexagonal (space group $P\bar{3}m1$; one formula unit in the cell); with $A^{2+} = Sr$ a triclinic distortion is observed. For $Ba_3CoNb_2O_9$ a second transformation into a cubic disordered perovskite takes place at 1500°C. This transition is reversible and of the order-disorder type. The vibrational and diffuse reflectance spectra are discussed.

Einführung

Arbeiten Im Rahmen von über Ordnungs-Unordnungsphänomene in Perowskitstrukturen (1-9) wurden die Untersuchungen an Verbindungen den $A_3^{2+}B^{2+}M_2^{5+}O_9; A^{2+} = Ba, Sr; B^{2+} = Mn, Co,$ Ni, Zn; $M^{5+} =$ Nb, Ta erneut aufgegriffen. Mit Ausnahme von Ba₃MnNb₂O₉ sind alle Perowskite bereits in der Literatur beschrieben (Literaturangaben s. Tabelle I). Dabei wird die Struktur für einen Teil als kubisch $(a \approx 4 \text{ Å})$ und für einen anderen als hexagonal angegeben, wobei die letztere Zelle aus der kubischen über folgende Beziehung hervorgeht: $a_{\text{hex}} \simeq a_{\text{kub}} \cdot 2^{1/2}$; $c_{\text{hex}} \simeq$ $a_{\rm kub} \cdot 3^{1/2}$. Im kubischen Perowskit (im folgenden mit K bezeichnet), der 1/3 Formeleinheit $A_3BM_2O_9 = AB_{1/3}M_{2/3}O_3$ enthält, sind die Oktaederlücken statistisch mit $\frac{1}{3}B^{2+}$

und $\frac{2}{3}M^{5+}$ besetzt. Die hexagonale Struktur (im folgenden mit H bezeichnet) enthältwie die kubische Zelle-ausschließlich kubisch gepackte AO₃-Schichten (3L; Sequenz $(c)_{3}$). Sie entsteht bei Vorliegen einer 1:2 Ordnung von B und M (s. Abb. 1), dabei werden die Oktaederplätze in Schichten senkrecht zu c der hexagonalen bzw. zur Raumdiagonale der kubischen Zelle mit B^{2+} und M^{5+} in der Folge B^{2+} , M^{5+} , M^{5+} besetzt. Verbindungen des H-Typs kristallisieren in der R.G. P3m1 (14). Im Gegensatz zur K-Form, in der das Oktaedergerüst aus einem dreidimensional über Ecken verknüpften Verband aus $(B_{1/3}M_{2/3})O_{6/2}$ -Oktaedern besteht. liegen in der *H*-Modifikation Oktaederschichten vor, in denen sich ausschliesslich hochgeladene M-Ionen befinden (Zusammensetzung $M_2O_7O_{4/2}$; diese sind voneinander durch Schichten mit niedrig geladenen B-Ionen getrennt.

0022-4596/82/070051-12\$02.00/0 Copyright © 1982 by Academic Press, Inc. All rights of reproduction in any form reserved.

^{*} To whom inquiries should be addressed.

					Dic	hte	L	iteratur	
Zusammenset	zung	Farbe	а	с	ber	gef	a	с	
Ba ₂ MnNb ₂ O ₂	K ₁	schwarz	4,112		6,34 ₃	6,1 ₀		_ , , , , , , , , , , , , , , , , , , ,	
	Ĥ	schwarz	5.81	7,14	6,32,	6,15	_	_	
Ba ₂ CoNb ₂ O ₂	K ₁	braunschwarz	4,08,		6,51	6,2,	4,09(<i>K</i>)		(10)
	Ĥ	rotbraun	5,775	7,087	6,49 ₆	6,2 ₈	_	_	
Ba _s NiNb ₂ O ₂	<i>K</i> ₁	helloliv	4,077		6,53 ₈	6,25	4,074(<i>K</i>)		(Π)
	Ĥ.	heligelb	5,752	7,06 <u>s</u>	6,56 ₈	6,3,	_	_	
Ba ₃ ZnNb ₂ O ₈	K ₁	weiß	4,092		6,52	6,2 ₉	4,0958(<i>K</i>)		(12)
	-						4,094(<i>K</i>)		(II)
	H^a	weiß	5,782	7,10 <u>2</u>	6,51 ₈		_	·	
Ba ₃ MnTa ₂ O ₉	K ₁	schwarz	4,11 3		7,73 ₉	7,45	_		
	Ĥ	schwarz	5,81 ₈	7,15 ₈	7,704	7,52	5,819	7,127(H)	(13)
BaaCoTa2Oa	K ₁	dunkelbraun	4,08		7,93	7,62	_		
	Ĥ	rotbraun	5,775	7,09 ₆	7,91	7,7 ₃	5,776	7,082(<i>H</i>)	(13)
BaaNiTa2O2	K,	helloliv	4,076		7,98 ₂	7,69	_		
	Ha	hellgelb	5,75	7,07,	7,98 ₆	—	5,758	7,052(<i>H</i>)	(13)
Ba ₃ ZnTa ₂ O ₈	K _t	weiß	4,098		7,92 <mark>0</mark>	7,64	4,0917(1)(K)		(14)
	Ha	weiß	5,78	7,10 ₉	7,93 s		5,782	7,097(<i>H</i>)	(13)
							5,7807(1)	7,1047(1)(<i>H</i>)	(14)
Sr ₃ CoNb ₂ O ₉	K ₁	braunschwarz	3,99 ₂		5,66,	5,52	8,01(<i>K</i>)		(15)
	Ha	rotbraun	5,645°	6,94 ₈	5,643		_		
Sr ₃ NiNb ₂ O ₈	K ₁	oliv	3,985		5,697	5,50			
	H	hellgrün	5,62 8 0	6,92 <u>2</u>	5,69 ₈	5,5 ₈	5,64	6,90(<i>H</i>)	(H)
Sr ₃ ZnNb ₂ O ₉	K ^c ₁	weiß	4,00 ₂		5,682	5,5 ₈	5,66	6,96(<i>H</i>)	(H)
Sr ₃ CoTa ₂ O ₉	K ₁	braunschwarz	3,994		7,19 ₀	6,94			
	H	rotbraun	5,64 8	6,96 ₀	7,16 ₈	6,9 7	5,630	6,937(<i>H</i>)	(13)
Sr ₃ NiTa ₂ O ₉	K ^c ,	oliv	3,991		7,20 ₃	6,9 ₉	5,607	6,923(<i>H</i>)	(13)
Sr ₃ ZnTa ₂ O ₂	K ^c ₁	weiß	4,007		7,17 ₆	6,87	5,664	6,951(<i>H</i>)	(13)

TABELLE I Gitterkonstanten (Å) und Dichtewerte (g/cm³)

^a Leicht inhomogen.

^b a = b; $\alpha = 90,3^{\circ}$; $\beta = 89,7^{\circ}$; $\gamma = 120^{\circ}$.

^c Bis 1300°C (B²⁺ = Zn) bzw. 1350°C keine Phasenumwandlung, aber geringe Zersetzung.

ABB. 1. Struktur der H-Modifikationen $A_3BM_2O_9$ (3L; Sequenz (c)₃; Schnitt durch die 110-Ebene).

Experimenteller Teil

Ausgangsprodukte waren BaCO₃ und ZnO (p.A.; Merck); SrCO₃ (Selectipur; Merck); NiCO₃ (rein; Riedel de Haen); MnO (durch Reduktion des Oxalats (aus Mn(NO₃)₂ · 4H₂O (p.A.; Riedel de Haen) im H₂-Strom bei 1050°C); Co₃O₄ (Co₂O₃ nach Brunk; p.A. Riedel de Haen; das käufliche Oxid besitzt nach der analytischen Untersuchung die Zusammensetzung Co₃O₄) sowie Nb₂O₅ und Ta₂O₅ (99,9%; Fluka). Tiegelmaterial war Sinterkorund, Degussit Al 23.

Die Dichten wurden pyknometrisch mit *n*-Octan als Sperrflüssigkeit bestimmt.

Für die Anfertigung der Röntgenaufnahmen (Cu $K\alpha$ -Strahlung) fand ein selbstregistrierendes Zählrohr goniometer der Firma Philips Verwendung. Die IR-Spektren (Bereich 4000-250 cm⁻¹) wurden mit einem Beckman-Spektograph IR 20A, die FIR-Spektren (Bereich 650-50 cm⁻¹) mit einem Fouriergerät der Firma Bruker IFS 114c und die Ramanspektren (Bereich 1000-350 cm⁻¹) mit dem Coderg-Spektrographen PH 1 registriert. Für alle Mn-haltigen Verbindungen sowie die K-Formen mit B^{2+} = Co und für Sr₃NiM₂O₉ (M = Nb, Ta) konnten wegen zu starker Eigenabsorption keine Ramanspektren erhalten werden. Zur Registrierung der diffusen Reflexionsspektren diente das Zeiss-Spektralphotometer DMR 21 in Verbindung mit dem Reflexionsansatz ZR 21. Als Standard fand im langwelligen Bereich (≤ 16667 cm⁻¹) sublimierter Schwefel und im kurzwelligen ($\geq 12~500~cm^{-1}$) BaSO₄ Verwendung.

Die Intensitätsberechnungen konnten mit dem Programm "Lazy Pulverix" von Yvon et al. (16, 17) im Zentrum für Datenverarbeitung der Universität Tübingen durchgeführt werden.

Darstellung und Struktur

Zur Darstellung wurde das in einer Achatreibschale innig verriebene, stöchiometrische Gemisch der Ausgangs produkte in Korundtiegeln an der Luft erhitzt (Glühzeiten und -temperaturen s. Tabelle II), zwischen den einzelnen Heizphasen erneut fein verrieben und der Reaktionsfortgang röntgenographisch verfolgt.

Für alle Präparate entstand zunächst eine kubische, röntgenographisch einheitliche Perowskitphase vom K-Typ (zur Unterscheidung von einer weiteren K-Phase (K_2 ; s.u.) in den Tabellen I und II mit K_1 bezeichnet). Die Gitterkonstanten und Dichtewerte sind in Tabelle I angeführt.

Die Hälfte der einzelnen K_1 -Formen wurde anschließend bei höheren Temperaturen geglüht (s. Tabelle II); dabei wandelten sich für A^{2+} = Ba die K_1 -Phase stets in einen hexagonalen 3L-Perowskit (in den Tabellen I und II mit H bezeichnet) um. Die Präparate der Zusammenset- $Ba_3ZnTa_2O_9$, $Ba_3ZnNb_2O_9$, zung und Ba₃NiTa₂O₈ enthielten daneben gerade erkennbare Anteile an Zersetzungsprodukten. Bei den Sr-Verbindungen Sr₃CoTa₂O₉ und Sr₃NiNb₂O₉ konnte durch Anwendung höherer Temperaturen ebenfalls eine Umwandlung der ungeordneten K_1 -Form in eine Ordnungsvariante vom H-Tvp herbeigeführt werden. Im Gegensatz zu den entsprechenden hexagonalen Ba-Perowskiten ist das Gitter hier leicht triklin deformiert. Für Sr₃CoNb₂O₉ war ein entsprechender Übergang zu beobachten, wobei neben der gebildeten H-Phase röntgenographisch geringe Mengen an Zerfallsprodukten erkennbar sind. Keine ließen K_{1} -Phasenumwandlungen die Modifikationen von Sr₃ZnNb₂O₉ und Sr₃ZnTa₂O₉ (bis 1300°C) bzw. Sr₃NiTa₂O₉ (bis 1350°C) erkennen, statt dessen zeigten sich beginnende Zersetzungsreaktionen. Versuche zur Darstellung von $Sr_3MnM_2^{*+}O_9$ $(M^{5+} = Nb, Ta)$ schlugen fehl. Die Gitterkonstanten und Dichtewerte der H-Formen finden sich in Tabelle I.

Ein Vergleich der Zelldimensionen der K_{1} - und H-Typen für $A^{2+} =$ Ba mit den vorhandenen Literaturdaten (Tabelle I) ergibt eine befriedigende Übereinstimmung. Dagegen werden die H-Formen Sr₃NiNb₂O₉ und Sr₃CoTa₂O₉ als von hexagonaler Symmetrie beschrieben. Für Sr₃CoNb₂O₉ findet sich in (15) eine kubische Zelle mit a = 8,01 Å, was etwa dem doppelten Wert des hier für K_1 -Sr₃CoNb₂O₉ Å) entspricht.

Bei den Gitterkonstanten der K_1 und H-

			GLÜHZEN	TEN (h) UND -T	EMPERATUREN	(C)			
Zusammensetzung	900°C	1000°C	1050°C	1100°C	1150°C	1200°C	1300°C	1350°C	1400°C
Ba _s MnNb ₂ O ₆	1 × 12	5 × 27		5 × 71	$2 \times 80 (\mathbf{K}_1)$		3 × 32 (H)		
Ba _s CoNb ₂ O ₅		1×13			i	$3 \times 37 (K_1)$	3×33 (H)		
Ba,NiNb,O,		$10 \times 62 (K_1)$				$8 \times 56 (H)$			
Ba, ZnNb, O,		1×30				$4 \times 34 (K_1)$	1 × 40	1×3 (H)	
Ba _s MnTa _s O _s	1×5	6×43	9×37	$2 \times 45 (K_1)$	5×25		$5 \times 24 (H)$		
BasCoTa20	1×5	2×21	2×39	1×24			$3 \times 31 (K_1)$	1×20	$3 \times 4 (H)$
Ba _s NiTa _s O _s		8×36	3×30	$3 \times 36 (K_1)$		2 × 48	2×20	$1 \times 21 (H)$	
Ba _a ZnTa ₂ O ₉		8×36	3×30	$3 \times 36 (\mathbf{K}_1)$		2×25	$2 \times 20 (H)$		
Sr _s CoNb _s O _s		6 × 42	2×71	6×85	1 × 11	$2 \times 52 (\mathbf{K}_1)$	1×36	$2 \times 31 (H)$	
Sr _s NiNb ₂ O ₆		6 × 1 6	2×59	$2 \times 30 (K_1)$		2×47	2×29	1×5 (H)	
Sr ₃ ZnNb ₃ O ₆	3×85	1×122		3 × 45	1×35	$1 \times 43 (K_1)$			
SrsCoTa20		8 × 43	4×41	8 × 48	1×10	$3 \times 39 (K_1)$	1×13	3×27	2×3 (H)
Sr _s NiTa _s O _s		6×42	$2 \times 45 (K_1)$						
Sr _s ZnTa ₂ O ₈	3×24	$1 \times 40 (K_1)$							

TABELLE II

TREIBER UND KEMMLER-SACK

Modifikationen bestehen für gleiches A^{2+} und B^{2+} zwischen M^{5+} = Nb und Ta nur geringfügige Unterschiede, wie nach den übereinstimmenden Ionenradien von Nb⁵⁺ und Ta⁵⁺ (0,64 Å) (18)) zu erwarten ist. Für die Abhängigkeit der Zelldimensionen vom B^{2+} -Radius (bei gleichem A^{2+} und M^{5+}) sollte eine dem Gang der Radien ($r_{N1^{2+}} < r_{C0^{2+}} < r_{C0^{2+}} < r_{Mn^{2+}}$) entsprechende Reihenfolge beobachtet werden. Die Tabelle I zeigt jedoch, daß die Werte der Co²⁺-Perowskite stets unterhalb derjenigen der Zn²⁺-Verbindungen liegen.

Am Beispiel von $Ba_3CoNb_2O_9$, $Ba_3NiNb_2O_9$, und $Ba_3MnNb_2O_9$ konnte nachgewiesen werden, daß die Umwandlung $K_1 \rightarrow H$ irreversibel ist: Langsames Abkühlen der *H*-Modifikationen von der Reaktionstemperatur um täglich 100 auf 500°C erbrachte keine Änderung der Struktur.

Weiterhin wurde Ba₃CoNb₂O₉ einer zusätzlichen Behandlung bei höheren Temperaturen ausgesetzt (6 hr, 1350°C; 11 hr, 1400°C; 14 hr, 1450°C), wobei zunächst die hexagonale Phase erhalten blieb. Nach weiteren 5 hr bei 1500°C konnte eine erneute Umwandlung in einen kubischen, ungeordneten Perowskit (im Unterschied zu der bei tiefen Temperaturen erhaltenen K_1 -Form mit K_2 bezeichnet) erreicht werden. Die Gitterkonstante der K_2 -Phase liegt mit $4,08_9$ Å nur wenig oberhalb vom K_1 -Wert = 4,08₃ Å. Der Übergang $H \rightarrow K_2$ ist weiterhin reversibel. Wird K₂-Ba₃CoNb₂O₉ um täglich 100°C von 1500 auf 500°C abgekühlt, ist eine vollständige Umwandlung K_2 \rightarrow H zu beobachten. Die auf diese Weise entstandene H-Modifikation besitzt dabei mit $a = 5,77_2$ Å; $c = 7,08_6$ Å praktisch die gleichen Zelldimensionen wie diejenige, die bei der Überführung $K_1 \rightarrow H$ erhalten wurde $(a = 5,77_5 \text{ Å}; c = 7,08_7 \text{ Å})$. Bei den einzelnen Phasenübergängen sind nur kleinere Änderungen der Zellvolumina zu beobachten: K_1 (1200°C; 68,07 Å³) $\rightarrow H$ $(1300^{\circ}C; 68, 2_3 \text{ Å}^3) \rightarrow K_2 (1500^{\circ}C; 68, 3_7)$ \mathring{A}^{3} \rightarrow H (500°C; 68,1₅ \mathring{A}^{3}). Die Umwandlung $K_{1} \rightarrow H$ ist für $B^{2+} = Co$, Ni mit einer Farbaufhellung verbunden (s. Tabelle I; sowie Abb. 4 und 5).

Intensitätsberechnungen

Um für die **H**-Modifikationen $A_3^{2+}B^{2+}M_2^{5+}O_9$ (M^{5+} = Nb, Ta) den Nachweis auf das Vorliegen einer geordneten Verteilung von B^{2+} und M^{5+} (1:2 Ordnung) zu erbringen, wurden Intensitätsberechnungen an Pulverdaten am Beispiel von $Ba_3CoNb_2O_9$, $Ba_3MnNb_2O_9$, und Ba_3Mn Ta₂O₉ durchgeführt. Dazu fanden alle beobachteten Reflexe bis $2\theta = 90^{\circ}$ sowie die berechneten $I_c \ge 1$ Verwendung (Intensität des stärksten Reflexes auf 1000 normiert; fielen mehrere Reflexe in einem Winkelbereich zusammen, so wurden sie dann in die Rechnung mit einbezogen, wenn ihre Gesamtintensität ≥ 1 betrug). Mit den idealen Lagen (s. Tabelle III) sowie einem isotropen Temperaturfaktor B = 0 für alle Atome ergibt sich der Zuverlässigkeitsfaktor R' = $\Sigma | I_c - I_0 | / \Sigma I_c zu 3,7\%$ (Ba₃CoNb₂O₉); $(Ba_3MnNb_2O_9)$ 3,1% bzw. 4.5% $(Ba_3MnTa_2O_9)$. Diese niedrigen R'-Werte bestätigen das vorgegebene Struktur modell. Wegen der guten Übereinstimmung wurde auf eine Verfeinerung verzichtet. Die berechneten (I_c) und beobachteten (I_0) Intensitäten sind in Tabelle IV angeführt. Hinweise auf die Vollständigkeit der Ordnung von B^{2+} und M^{5+} liefert ein

TABELLE III

ATOMLAGEN FÜR DIE *H*-MODIFIKATION $A_3^{2+}B^{2+}M_2^{5+}O_9$ (Hexagonale 3*L*-Struktur; R.G. $P\bar{3}m1-D_{3d}^3$)

			x	у	z	
1 A (1)	in	1 <i>b</i>	0	0	ł	
2A(2)	in	2 <i>d</i>	ł	23	z	$z = \frac{1}{6}$
1 <i>B</i>	in	1 <i>a</i>	0	0	0	-
2 <i>M</i>	in	2 <i>d</i>	13	23	z	$z = \frac{2}{3}$
30(1)	in	3f	1	0	$\frac{1}{2}$	-
6O(2)	in	6i	x	x	z	$x = \frac{1}{6}; z = \frac{1}{6}$

Vergleich von I_c und I_0 der durch die Kationenordnung hervorgerufenen Ordnungsreflexe (in Tabelle IV jeweils kursiv Gedruckt), da für eine partielle Ordnung bei diesen Interferenzen $I_0 < I_c$ (bzw. für eine Statistik $I_0 = 0$) zu erwarten wäre. Dieser Effekt läßt sich bei den Werten in Tabelle IV jedoch nicht erkennen, so daß mit keinen nennenswerten Abweichungen von der 1:2 Ordnung zu rechnen ist. Zum gleichen Ergebnis kommen die an hexagonalem $Ba_3ZnTa_2O_9$ von Jacobson *et al.* (14) durchgeführten Intensitätsberechnungen.

Schwingungsspektroskopische Untersuchungen

Für die in der Raumgruppe (R.G.) $P\bar{3}m1$ -

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Ba _s Col	Nb ₂ O ₉	Ba _s Mn	Nb ₂ O ₉	Ba _s Mn	Ta _s O _s		Ba _s Col	Nb ₂ O ₉	Ba₃Mn	Nb ₂ O ₉	Ba _s Mn'	Ta _s O _s
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	hkl	I _c	I ₀	I _c	I ₀	I _c	I ₀	h kl	I _c	I ₀	I _c	I _o	I _c	I ₀
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	001	13	16	13	10	58	29	130]	1		1		2]	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	17	17	18	11	81	76	310)	1	_	1	—	3∫	,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	101	59)		61]	77	16]	91	015	5)		5)		1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	011	11∫	11	11)	11	52∫	01	105	1		1		2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	002	3	7	3	5	12	15	303	4 (18	4 (20	1	17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	102	4	_	5		23		033	4 (10	4	20	1	••
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	012	1000}	1972	1000 }	1973	1000}	1999	131, 131	5		5		3	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	110	997)		994)	•	993)		311, 311	s)		5)		3)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	111, 111 200	7	6	8	3	37	21	222, 222			1		·)	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200	ر	/	(و	د	12	10	124, 124	85		85		89	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	003	4/	100	48	100	24	40	214, 214	85	346	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	351	~~~	354
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	021	141	199	142	198	20	49	312, 312	85		80		00	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	201	5)	12	5)	7	13)	10	132, 132	84)		8) J	2	ر ₀₀	15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	112, 112	2)	13	י י)	,	23 10)	19	115, 115	I		1	3	7	15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	103 013	2	13	2	6	10	17	025	-12	_			2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	015	2)		2)		0)		205	14		14		5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	202	641	634	611	628	503	600	205	28	48	28	54	٦J	13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	120	1)		1)		7)		401	14	40	14	54	2	15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	210	2	—	2	7	7	14	041	i)		- iJ		2J	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	113. 113	18		19)		4		304	_		_		2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	121, 121	11}	36	11}	38	8}	31	034					2∫	14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	211, 211	11]		11)		8)		313, 31 3	1]		1}		3)	17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	004				_	2	8	133, 13 3	ı∫	_	15	_	4∫	14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	203	1]	۲	1]	۲.	5]	22	006	32]		32		31	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	023	1]	5	1]	5	6)	<i></i>	402	1}	121	1}	136	2}	125
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	014	1)		- Ŋ		5]		042	96)		97 J		91)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	104	197		197		201		106	ı)) .		- 1)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	212, 212	196 >	803	196 >	805	205 >	826	016)	1	10	[1	—	$\frac{2}{3}$	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	122, 122	196		196		205		320	. [{			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	300	1957		1967		1997		230)	IJ.		1		2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	301		<u> </u>	1]	_	4	12	125, 125	- 1				<u></u>	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	031	IJ		1)		2)		215, 215	4	29		11	- {}	13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	114, 114 202	1		1	6	<u>'</u>	17	231, 231			3		-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	302 022	1		1	3	2	1/	321, 321	ر.		ب ۳		2)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	052 213 213	1)		1)		າ) ຄ		224,224		_		—	D D	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	122 12	2	9	2	7	7	16	034	_	_	_	_	2	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	123, 123 104	1		1		2) 2)		116 116	107)	_	107	_	107	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	024	103	282	105	301	183	362	314 134	53		53		55	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	220	192	565	193	371	182	502	314, 314	53		53		55	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	005		_		_	ī	-	232, 232	53	416	53	436	55 >	410
140 53 53 53 410 53 53 53	221, 221	1		1		6	5	322, 322	53		53		55	
410 53 53 53	-,	-		-				140	53		53		53	
								410	53		53		53	

TABELLE IV

Berechnete (I_c) und beobachtete (I_0) Intensitäten von hexagonalen 3L-Verbindungen

 D_{3d}^{3} (Punktlagen s. Tabelle III) kristallisierenden 1:2 geordneten H-Modifikationen $A_{3}B^{2+}M_{2}^{5+}O_{9}$ und einer Formeleinheit pro Zelle liefert die Faktorgruppenanalyse für k = 0 (19) die irreduziblen Darstellungen:

$$\Gamma_{\text{tot}} = 4A_{1g} + A_{2g} + 5E_g + 2A_{1u} + 8A_{2u} + 10E_u.$$

Nach Abzug der Translationen der A-Ionen $(A_{1g} + E_g + 2A_{2u} + 2E_u)$ and B-Ionen $(A_{2u} + E_g)$

 E_u) sowie der akustischen Schwingungen $(A_{2u} + E_u)$ verbleiben für die $M_2O_7O_{4/2}$ -Schichten

$$\Gamma_{M_{2}O_{7}O_{4/2}} = 3A_{1g} + A_{2g} + 4E_{g} + 2A_{1u} + 4A_{2u} + 6E_{u}.$$

Diese lassen sich über eine Schwingungsbildanalyse (20) mit den Frequenzen von isolierten MO_6 -Oktaedern der Symmetrie O_h in Beziehung setzen:

$$\begin{split} & \text{MO}_{6} \left(O_{h} \right) \qquad \text{M}_{2}\text{O}_{7}\text{O}_{4/2} \left(D_{3d} \right) \\ & A_{1g} \left(\nu_{1} \right) \rightarrow A_{1g}(\text{R}) + A_{2u}(\text{IR}) \\ & E_{g} \left(\nu_{2} \right) \rightarrow E_{g}(\text{R}) + E_{u}(\text{IR}) \\ & T_{2g} \left(\nu_{5} \right) \rightarrow A_{1g}(\text{R}) + E_{g}(\text{R}) + A_{2u}(\text{IR}) + E_{u}(\text{IR}) \\ & T_{1g} \left(R \right) \rightarrow A_{2g}(\text{ia}) + E_{g}(\text{R}) + A_{1u}(\text{ia}) + E_{u}(\text{IR}) \\ & T_{1u} \left(\nu_{3} \right) \rightarrow A_{2u}(\text{IR}) + E_{u}(\text{IR}) \\ & T_{1u} \left(\nu_{4} \right) \rightarrow A_{2u}(\text{IR}) + E_{u}(\text{IR}) \\ & T_{2u} \left(\nu_{6} \right) \rightarrow A_{1u}(\text{ia}) + E_{u}(\text{IR}) \\ & T_{1u} \left(T \right) \rightarrow A_{1g}(\text{R}) + E_{g}(\text{R}) \\ & + \left((A_{2u} + E_{u}) : \text{ akustische Schwingungen} \right) \end{split}$$

Insgesamt sind für die $M_2O_7O_{4/2}$ -Gruppen sieben raman- und zehn IR-aktive Schwingungen zu erwarten, wovon vier ramanaktive Frequenzen (aus dem ν_1 -, ν_2 -, und ν_5 -Gebiet) in den hier zugänglichen Meßbereich fallen sollten.

Für die K-Modifikationen $A_3B^{2+}M_2^{5+}O_9$ mit statistischer Verteilung von B^{2+} und M^{5+} und $\frac{1}{3}$ Formeleinheit pro Zelle (R.G. $Pm3m=O_k^{1}$ (1A in 1b; $(\frac{1}{3}B + \frac{2}{3}M)$ in 1a; 3O in 3d)) werden die B- und M-Ionen bei der Faktor gruppenanalyse als identisch betrachtet, da sie gemeinsam eine Punktlage besetzen; es resultieren die irreduziblen Darstellungen

$$\Gamma_{\rm tot} = 4T_{1u} + T_{2u}$$

sowie nach Abzug der Translation von A (T_{1u}) und des akustischen Zweigs (T_{1u}) folgende Schwingungen innerhalb des $(B_{1/3}M_{2/3})O_{6/2}$ -Oktaedergerüsts

$$(B_{1/3}M_{2/3})O_{6/2} = 2T_{1u}(IR) + T_{2u}(ia).$$

Damit sind für die K-Formen zunächst allein zwei IR-aktive Frequenzen zu erwarten; alle symmetrischen Schwingungen sollten dagegen fehlen.

Die Faktorgruppenanalyse kann jedoch in diesem Fall die Verhältnisse nur unvollständig wiedergeben, weil sie zwischen den statistisch verteilten, unterschiedlich geladenen B- und M-Ionen nicht zu unterscheiden vermag. Im Gegensatz zur Besetzung identischer Gitterplätze mit einer Ionensorte führt jedoch die regellose Verteilung der zwei Ionensorten B und M über dieselben kristallographischen Plätze im Gitter zur Ausbildung verschiedenartiger, aus MO_6 -Oktaedern zusammengesetzter M_xO_y -Aggregate, deren Anzahl und Größe der Statistik unterworfen ist und die voneinander durch mit B^{2+} besetzte Oktaeder getrennt sind. Jede der $M_x O_y$ -Einheiten für sich ist in der Lage, neben den asymmetrischen auch symmetrische Schwingungen

auszuführen, weil sich die an die B^{2+} -Ionen grenzenden, von dieser Seite nur wenig beanspruchten M-O-Bindungen nicht nur asynchron sondern auch synchron bewegen können. Da die M_xO_y -Aggregate aus MO_6 -Oktaedern aufgebaut sind, lassen sich die Schwingungen in erster Näherung den Bereichen der MO_6 (O_h)-Oktaederschwingungen ($\nu_1-\nu_6$) zuordnen.

Schwingungsspektren der *H*-Die Modifikationen $\operatorname{Ba}_{3}B^{2+}M_{2}^{5+}O_{9}$ ($M^{5+} = \operatorname{Nb}$, Ta) entsprechen sich einander hinsichtlich der Frequenzlage und Bandenaufspaltung; dies trifft auch auf die leicht triklin deformierten Sr-Verbindungen zu, durch Symmetrieerniedrigung bedingte Bandenaufspaltungen werden dort nicht beobachtet. In Tabelle V sind die Bandenlagen am Beispiel von Ba₃CoTa₂O₉ und Ba₃NiNb₂O₉ angeführt. Ein Teil der Spektren ist in den Abb. 2 und 3 wiedergegeben. Im niederfrequenten FIR-Bereich liegen die Translationen der A-Ion (~140 cm⁻¹) und B-Ion (~170-200 cm⁻¹) sowie die Deformationen der $M_2O_7O_{4/2}$ -Einheiten nahe beieinander, was die Auswertung z.T. erschwert. Die Bandenzuordnung findet sich in Tabelle V.

Die IR/FIR- und Raman-Spektren der K-Formen entsprechen denjenigen der H-Modifikationen weitgehend (s. Abb. 2 und 3) und unterscheiden sich allein durch eine weniger ausgeprägte Bandenstrukturierung im Valenzbereich (>450 cm⁻¹; s. Abb. 3). Zum Vergleich sind in Tabelle V die an K_1 - $Ba_3ZnTa_2O_9$ und K_1 -Sr_3ZnTa_2O_9 bestimm-Frequenzlagen mit aufgenommen. ten Neben der aus der Faktor gruppenanalyse hervorgehenden asymmetrischen Valenzund Deformationsfrequenz, die sich im ν_3 bzw. ν_4 -Bereich befindet, werden auch intensive ramanaktive d.h. symmetrische Schwingungen beobachtet, was beim Vorliegen von $M_x O_y$ -Aggregaten zu erwarten ist (s.o.). Weiterhin erscheinen die beiden IR-aktiven Frequenzen nicht als Einzelbanden (Rasse T_{1u}), sondern zeigen eine Aufspaltung (s. Tabelle V).

Verbindung		ν_1 -Bereich	v₁-Be	sreich	v _s -Bereich	ν _s -Be	reich	v₄-Be	creich	v _e Bereich	Ł	T B	(+ 2	T(A**)
Ba ₆ CoTa ₄ O ₆ (H) (H)	IR/FIR: Raman:	770 sh 795 vst	700 sh	625 vst	525 st 530 w	430 w	400 sh	330 sh	305 vst	270 sh	235 m	195 sh	170 w	140 vst
Ba _s NiNb ₁ O ₅ (H) (H)	IR/FIR: Raman:	795 sh 790 vst	670 sh	610 vst 	495 st 495 vw	435 sh 435 m	395 sh 385 vst	320 vst	290 st	240 vst	210 vst	180 st		145 vst
Ba ₁ ZnTa ₁ O ₆ (K ₁) (K.)	IR/FIR: Raman	820 sh 805 vst	670 sh 	630 vst 	535 m 530 vw	425 sh 425 m	400 sh 380 st	340 sh	310 vst	260 sh	235 sh	200 st	165 w	145 vst
Sr ₃ ZnTa ₂ O ₆ (K ₁) (K ₁)	IR/FIR: Raman:	825 sh 840 vst	700 sh _	665 vst 	585 m 590 w	430 sh 440 sh	385 sh 380 m	340 sh	305 vst	280 sh	230 sh	205 m	180 sh	145 st

FABELLE V

ABB. 2. Ramanspektren von $Ba_3NiNb_2O_9$ (*H*) und $Ba_3ZnNb_2O_9$ (*K*₁). PL = Plasmalinie.

Aus der Ähnlichkeit der Schwingungsspektren von H- und K-Formen läßt sich schliessen, daß der Bau der M_xO_v -Aggregate in K zumindest teilweise demjenigen der $M_2O_7O_{4/2}$ -Einheiten von H entspricht, was Hinweise auf das Vorliegen einer Nahordnung in den K-Modifikationen liefert.

Diffuse Reflexionsspektren

Von den K- und H-Modifikationen

ABB. 3. IR-Spektren der einzelnen Modifikationen von $Ba_3CoNb_2O_9$.

ABB. 4. Diffuse Reflexionsspektren von K_1 - und H-Ba₃CoNb₂O₉.

 $A_{3}B^{2+}M_{2}^{5+}O_{9}$ mit $B^{2+} = Co$, Ni wurden die Reflexionsspektren diffusen aufgenommen,¹ die in Abb. 4 und 5 am Beispiel von $Ba_3CoNb_2O_9$ und $Sr_3NiNb_2O_9$ dargestellt sind. Ebenso wie für die anderen Perowskite zeigen die jeweils tiefer farbiüber K-Formen den gen gesamten Spektralbereich eine stärkere Absorption als die entsprechenden H-Modifikationen, so daß sich die $d \rightarrow d$ Übergänge im Termsystem von Co²⁺ bzw. Ni²⁺ z.T. undeutlich zu erkennen geben.

Die Bandenlagen finden sich in Tabelle VI; die Zuordnung sowie die Berechnung von 10 Dq und B wurde nach (21) vorgenommen. Wie ein Vergleich der Werte in Tabelle VI ergibt, treten zwischen

ABB. 5. Diffuse Reflexionsspektren von K_1 - und H-Sr₃NiNb₂O₉.

¹ Die Spektren der schwarzen Mn-Verbindungen weisen keine diskreten $d \rightarrow d$ Übergänge auf.

			und Racahp	arameter 1(0 Dq bzw. B ((cm ⁻¹)				
Verbindung	+T ₁₀ -	+ 4T ₂₀	${}^{4}\mathrm{T}_{1\sigma} \rightarrow {}^{4}\mathrm{A}_{2\sigma}$	+ ¶ 1,	+T ₁₀ (P)	a	q		10 Dq ^c	B
Ba _s CoNb ₂ O ₆ (K ₁)	7355	5 b	~15400 sh	1815	60 b		26595 b		9200	840
(H)	7445	5 vst	15625 sh	1805	Ш ()	19800 sh	26595 b		9300	830
Ba _s CoTa ₂ O ₂ (K ₁)	7545	5 b	I	1818	80 b	I	26880 b		9400	840
	742(0 vst	15675 sh	1818	80 st	19960 sh	28985 vst		0066	840
Sr ₃ CoNb ₂ O ₆ (K ₁)	7700	0 sh	~17000 sh	1818	80 sh		26880 b		9600	830
Sr ₃ CoTa ₂ O ₉ (K ₁)	7700	0 sh	~16500 sh	1852	0 sh	-	27390 b		9600	850
(H)	1961	0 sh	16695 sh	1890)5 m	20660 sh	29155 vst		0066	865
				³ A ₂₀ -	→ ³ T ₁₀					
		$^{3}A_{20} \rightarrow ^{3}T_{20}$		³ A ₂₀ -	→ ¹ E _a	${}^{3}A_{2a} \rightarrow {}^{1}T_{2a}$	$^{3}A_{20} \rightarrow ^{3}T_{10}$	ст	10 Dq	B
$Ba_{a}NiNb_{a}O_{b}(K_{1})^{d}$	7570 sh	7800 st	8080 sh	12805 st	13315 sh	20535 sh	23200 sh	30675 vst	7800	840
p(H)	7570 sh	7815 vst	8145 sh	13005 vst	13475 sh	20490 m	23200 st	30580 vst	7800	865
Ba _s NiTa _s O ₉ (K ₁)	7195 sh	7645 st	8040 sh	12675 st	13890 m	20965 b	23255 st	30250 vst	7600	860
Sr ₃ NiNb ₂ O ₉ (K ₁)		8850 b		1450	0 P	22220 sh	24630 b	29850 vst	8850	855
(H)	8140 sh	8775 vst	9165 sh	14085 sh	14750 vst	22025 sh	25000 st	30120 vst	8800	840
$Sr_3NiTa_2O_9$ (K_1)		8850 b		1430	9 Q	21785 sh	25000 b	30395 vst	8850	855
^a Zuordnung unsi ^b Zuordnung unsi ^c Aus $T_{Ig} \rightarrow T_{Zg}$ ^d Zusätzliche sch	icher; versuchsw cher; spinverbot ≡ ~8 Dq berecl wache Schulter t	eise dem spinv ener Übergang hnet. bei ~18 000 cm	erbotenen Übe ${}^{4}T_{10} \rightarrow {}^{2}T_{10} +$	rgang ⁴T ₁₀ → CT-Kompone	² <i>T</i> ₂ø oder ⁴ <i>T</i> ₄ø ente.	$\to {}^2T_{\rm io}$ zugeot	dnet.			

TABELLE VI

BANDENLAGEN (cm⁻¹) UND ZUORDNUNG DER DIFFUSEN REFLEXIONSSPEKTREN SOWIE LIGANDENFELD-

K- und H-Form für gleiches A^{2+} und B^{2+} keine systematischen Unterschiede auf, so daß sich die auf die B^{2+} -Ionen wirkenden Ligandenfeldstärke jeweils entspricht. Beim Übergang von den Ba- zu den Sr-Verbindungen nimmt 10 Dq jeweils zu, was-bedingt durch die kleineren Zellvolumina-auf eine Abnahme der B^{2+} -O-Abstände mit A^{2+} = Sr schliessen läßt. Die Racah-Parameter fallen für alle Verbindungen in den schmalen Bereich von 830-865 cm⁻¹.

Diskussion

Perowskite vom Typ $A_{3}^{2+}B^{2+}M_{2}^{5+}O_{9}$ (A^{2+} = Ba, Sr; B^{2+} = Mn, Co, Ni, Zn; M^{5+} = Nb, Ta) zeigen Polymorphie, die auf Ordnungs-Unordnungsphänomene zurückzuführen ist. Für derartige Polymorphieerscheinungen ist zu erwarten, daß die Tieftemperaturform (TT) die geordnete und die Hoch temperaturmodifikation (HT) die ungeordnete Phase darstellt. Bei den hier untersuchten Verbindungen wandelt sich jedoch in einem ersten Schritt eine ungeordnete K_1 -Form in eine geordnete Modifikation vom H-Typ um, was zunächst ungewöhnlich erscheint. Allerdings erweist sich der Übergang $K_1 \rightarrow H$ als irreversibel. Die Ursache des anfänglichen Auftretens der ungeordneten K_1 -Form dürfte daher kinetisch bedingt sein: Für die Ausbildung einer vollständigen 1:2 Ordnung sind Platzwechselvorgänge zwischen B^{2+} - und M⁵⁺-Ionen erforderlich, der hierzu notwendige Energiebetrag kann bei der Bildungstemperatur der jeweiligen K_1 -Form offenbar noch nicht aufgebracht werden, so daß keine Fernordnung entsteht. Für das Vorliegen einer gewissen Nahordnung sprechen z.B. die ähnlichen schwingungsspektroskopischen Eigenschaften von K_1 und H.

Bei der Umwandlung $K_1 \rightarrow H$ wird-wie mit Intensitäts berechnungen gezeigt werden konnte-ein hoher Ordnungs grad erreicht: Anzeichen für nennenswerte Abweichungen von einer 1:2 Ordnung liegen nicht vor. Damit unterscheiden sich diese Perowskite von denjenigen der Zusammensetzung $A_2^{2+}B^{3+}M^{5+}O_6$ (A^{2+} = Ba, Sr; M^{5+} = Nb, Ta), die in einer nur partiell geordneten Struktur kristallisieren (8). Für dieses abweichende Verhalten dürften die dort vorliegende geringere Ladungsdifferenz zwischen den *B*- und *M*-Ionen maßgeblich sein.

Die in den 1:2 geordneten H-Formen einmal erzielte Ordnung läßt sich-wie für Ba₃CoNb₂O₉ bei Temperatur erhöhung auf 1500°C gezeigt werden konnte-erneut zerstören $(H \rightarrow K_2)$, durch Abschrecken auf Zimmer temperatur kann der ungeordnete Zustand eingefroren werden. Die Umwandlung $H \rightarrow K_2$ stellt einen Übergang vom Ordnungs-Unordnungstyp dar (s.o.). Bei der geordneten H-Phase handelt es sich thermdynamisch stabile um die TT-Modifikation, die sich in die ungeordnete HT-Form vom K_2 -Typ umwandelt. Der Übergang $H \rightarrow K_2$ erweist sich—wie für Ordnungs-Unordnungsphänomene typisch ist-als reversibel.

Die Ähnlichkeit der am Beispiel der K_{1-} und K_2 -Form von Ba₃CoNb₂O₉ erhaltenen Schwingungsspektren (s. Abb.3) liefert weiterhin Hinweise auf eine enge Verwandtschaft im strukturellen Aufbau der beiden kubischen Phasen. Da zu den Spektren der H-Form ebenfalls eine weitgehende Analogie besteht, dürften sowohl in der K_1 - als auch in der K_2 -Modifikation Bezirke mit Nahordnung vorhanden sein, deren fehlende Orientierung zueinander auf eine kubische Gittersymmetrie führt.

Anmerkung

Wir danken Frau R. Hüpper und Frau A. Ehmann für ihre Hilfe. Für die Aufnahme der FIR- und Raman-Spektren danken wir Herrn Prof. Dr. E. Lindner und Herrn E. Farag. Der Deutschen Forschungsgemeinschaft und dem Verband der Chemischen Industrie gilt unser Dank für die Unterstützung der Arbeit.

Bibliographie

- 1. S. KEMMLER-SACK, I. SEEMANN, UND H.-J. SCHITTENHELM, Z. Anorg. Allg. Chem. 422, 115 (1976).
- 2. S. KEMMLER-SACK UND I. SEEMANN, Z. Anorg. Allg. Chem. 424, 39 (1976).
- 3. S. KEMMLER-SACK UND I. JOOSS, Z. Anorg. Allg. Chem. 431, 153 (1977).
- 4. W. WISCHERT, H.-J. SCHITTENHELM, UND S. KEMMLER-SACK, Z. Anorg. Allg. Chem. 439, 250 (1978).
- 5. S. KEMMLER-SACK UND I. JOOSS, Z. Anorg. Allg. Chem. 440, 203 (1978).
- 6. G. RAUSER UND S. KEMMLER-SACK, J. Solid State Chem. 33, 135 (1980).
- 7. S. KEMMLER-SACK UND A. EHMANN, Z. Anorg. Allg. Chem. 479, 184 (1981).
- 8. U. WITTMANN, G. RAUSER, UND S. KEMMLER-SACK, Z. Anorg. Allg. Chem. 482, 143 (1981).
- 9. B. BETZ, H.-J. SCHITTENHELM, UND S. KEMM-LER-SACK, Z. Anorg. Allg. Chem., im Druck.
- 10. F. GALASSO, L. KATZ, UND R. WARD, J. Amer. Chem. Soc. 81, 820 (1959).

- 11. F. GALASSO UND J. PYLE, J. Phys. Chem. 67, 1561 (1963).
- 12. V. J. TENNERY UND K. W. HANG, J. Amer. Ceram. Soc. 53, 118 (1970).
- 13. F. GALASSO UND J. PYLE, Inorg. Chem. 2, 482 (1963).
- 14. A. J. JACOBSON, B. M. COLLINS, UND B. E. F. FENDER, Acta Crystallog. B 32, 1083 (1976).
- 15. G. BLASSE, J. Inorg. Nucl. Chem. 27, 993 (1965).
- Lazy pulverix, Program to Calculate Theoretical X-Ray and Neutron Diffraction Powder Patterns, Geneva 1/12/1977, from K. Yvon, W. Jeitschko, und E. Parthé.
- 17. K. YVON, W. JEITSCHKO, UND E. PARTHÉ, J. Appl. Crystallog. 10, 73 (1977).
- 18. R. D. SHANNON, Acta Crystallog. A 32, 751 (1976).
- D. M. ADAMS UND D. C. NEWTON, "Tables for Factor Group and Point Group Analysis," Beckmann-RIIC, Sunley House, Croydon 1970.
- 20. U. TREIBER, Dissertation Tübingen, 1981.
- A. B. LEVER, "Inorganic Electronic Spectroscopy," Elsevier, Amsterdam/London/New York, 1968.